Affine structures and a tableau model for E6 crystals

نویسندگان

  • Brant Jones
  • Anne Schilling
چکیده

We provide the unique affine crystal structure for type E 6 Kirillov–Reshetikhin crystals corresponding to the multiples of fundamental weights sΛ1, sΛ2, and sΛ6 for all s ≥ 1 (in Bourbaki’s labeling of the Dynkin nodes, where 2 is the adjoint node). Our methods introduce a generalized tableaux model for classical highest weight crystals of type E and use the order three automorphism of the affine E 6 Dynkin diagram. In addition, we provide a conjecture for the affine crystal structure of type E 7 Kirillov–Reshetikhin crystals corresponding to the adjoint node. Résumé. Nous donnons l’unique structure cristalline affine pour les cristaux de Kirillov–Reshetikhin de type E 6 correspondant aux multiples des poids fondamentaux sΛ1, sΛ2 et sΛ6 pour tout s ≥ 1 (dans l’étiquetage de Bourbaki des noeuds de Dynkin, où 2 est le noeud adjoint). Pour ceci, nous introduisons un modèle de tableaux généralisés pour les cristaux classiques du plus haut poids de type E et nous employons l’automorphisme d’ordre trois du diagramme de Dynkin du type E 6 . En outre, nous fournissons une conjecture pour la structure affine pour les cristaux de Kirillov–Reshetikhin de type E 7 correspondant au noeud adjoint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals

In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...

متن کامل

Description of B(∞) through Kashiwara Embedding for E6 and E7 Lie Algebra Types

We study the crystal base B(∞) associated with the negative part of the quantum group for finite simple Lie algebras of types E6 and E7. We present an explicit description of B(∞) as the image of a Kashiwara embedding that is in natural correspondence with the tableau description of B(∞).

متن کامل

A Systematic Approach to Photonic Crystal Based Metamaterial Design

Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-c...

متن کامل

A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)

Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009